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3D Facial Similarity Measurement and Its Application

in Facial Organization

CHENLEI LV, ZHONGKE WU, XINGCE WANG, and MINGQUAN ZHOU,

School of Artificial Intelligence, Beijing Normal University, China

We propose a novel framework for 3D facial similarity measurement and its application in facial organization.

The construction of the framework is based on Kendall shape space theory. Kendall shape space is a quotient

space that is constructed by shape features. In Kendall shape space, the shape features can be measured and

is robust to similarity transformations. In our framework, a 3D face is represented by the facial feature land-

marks model (FFLM), which can be regarded as the facial shape features. We utilize the geodesic in Kendall

shape space to represent the FFLM similarity measurement, which can be regarded as the 3D facial similarity

measurement. The FFLM similarity measurement is robust to facial expressions, head poses, and partial facial

data. In our experiments, we compute the distance between different FFLMs in two public facial databases:

FRGC2.0 and BosphorusDB. On average, we achieve a rank-one facial recognition rate of 98%. Based on the

similarity results, we propose a method to construct the facial organization. The facial organization is a hier-

archical structure that is achieved from the facial clustering by FFLM similarity measurement. Based on the

facial organization, the performance of face searching in a large facial database can be improved obviously

(about 400% improvement in experiments).
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1 INTRODUCTION

Biometric information has become extremely useful in modern life. As a popular type of biometric
information, the human face has been researched for many years and successfully applied in multi-
media fields such as digital security, network communication, film production industry, and so on.
As one of the most fundamental tasks in facial analysis, facial similarity measures frameworks [5,
10] can be used to represent the “distances” between different faces for quantitative facial analysis,
which has attracted considerable attention from researchers. In the 2D scenes, the computation of
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Fig. 1. The pipeline of our framework.

facial similarity [50, 54] is affected by various conditions, such as head poses, facial expressions,
natural noise, cosmetics, and illumination. Since 3D scanning devices and related technology have
been widely utilized in capturing 3D objects, using 3D scanning facial data in facial similarity
measures research has become possible. Based on the global geometric features in the 3D face, the
facial similarity measures are robust to texture information, such as lighting and cosmetics.

Although there are many advantages of constructing facial similarity measurement based on 3D
faces, some influencing factors that affect the accuracy of the measurement (expressions, rough
triangulated meshes, and occlusion regions) should be considered carefully. To solve the problem,
we propose a facial similarity measurement and organization framework based on Kendall shape
space theory [36]. The framework is mainly composed of four components: (1) pre-processing for
face registration [3], facial landmarks, and additional keypoints extraction; (2) FFLM construction
from source 3D face; (3) FFLM reconstruction to remove the influence of facial expressions; and
(4) similarity measurement of different FFLMs via geodesic distance computation in Kendall shape
space. Besides, we also explore the application of the proposed 3D facial similarity measurement on
facial organization. The construction of facial organization involves clustering FFLMs into different
subclasses based on their similarity and then building a tree structure for faces storing. The FFLMs
with similar shape information are placed into the same subclass. We present the pipeline of our
framework in Figure 1. For face recognition in a large database, the matching performance can be
improved considerably based on the facial organization.

In summary, our main contributions are as follows:

(1) We propose a novel facial similarity measurement method based on Kendall shape space
theory. Traditional applications based on Kendall theory focus on medical image process-
ing and simple 3D object shape analysis [19, 24]. We utilize the metric tools from Kendall
theory to build facial similarity measurement, which is more robust and accurate.

(2) We propose the FFLM for 3D face representation. The FFLM can be regarded as a recon-
struction form of a 3D face. The influence of facial expression can be removed from the
FFLM by using an optimization method in Kendall shape space, while the identity features
are preserved.

(3) We propose a facial organization method based on facial similarity measurement. The
organization can be used to improve the speed of face matching in a large facial database.

The rest of the article is organized as follows: In Section 2, we discuss the related works on
3D facial similarity measures. The basic theory of Kendall shape space is presented in Section 3.
In Section 4, the pre-processing of 3D scanning facial data is discussed. In Sections 5 and 6, we
illustrate the FFLM construction method and facial similarity measures in Kendall shape space.
The construction of facial organization based on the facial similarity measures is introduced in
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Section 7. In Section 8, we present experiments on public facial databases to evaluate the perfor-
mance of the facial similarity measurement and facial organization in our framework.

2 RELATED WORKS

Generally, 3D facial similarity measures methods extract geometric features from 3D face to build
measurement, which is divided into three categories according to the different types of geometric
features: modeling-based, global region-based, and local region-based.

Modeling-based methods construct the framework of the facial measures based on the recon-
structed facial model. The reconstruction process establishes a regular facial model for different
faces and retains robust geometric features that could support accurate facial measures. The 3D
Morphable Model is a classical facial modeling method and has been widely used in 3D facial mea-
sures [8, 9, 22, 26, 37]. There are also many studies that use bilinear model to reconstruct faces
for recognition purpose [15, 47, 48]. Li [41] proposed a facial expression analysis method that was
based on multi-features analysis. Xu [45] developed a data-driven face detection method based on
the Gaussian mixture model. Bronstein [10] proposed a canonical form for 3D face recognition.
Ansari [4] proposed a pipeline for 3D modeling and recognition of facial images from two or-
thogonal views. Zeng [63] proposed a facial representation using Ricci flow in the face-matching
process. Recently, using the Riemannian geometric framework to construct the face model in face
recognition is popular. Patel [49] used manifold optimization instead of linear operation in a face
modeling framework. Kurtek [38] proposed a statistical framework for facial modeling in surface
shape space. Drira [17] proposed a facial shape analysis framework for 3D face recognition.

Global region-based methods extract facial features from 3D face to achieve facial measure-
ment directly. Some methods defined the distance between two 3D faces inR3 space, such as points’
distance based [29, 60] and curves based [20, 32, 33, 39]. Some works attempted to combine the
machine learning framework and the facial features from R3 space to improve the recognition
rate. Ahdid [2] combined iso-geodesic curves and space reduction methods (principal component
analysis and Fisher linear discriminant analysis) to construct an automatic 3D face recognition
system. They improved the framework using Jacobi iterations to solve the Eikonal equation [1].
Other methods constructed 3D face-matching frameworks based on global facial features directly.
Berretti [5] proposed a method that used iso-geodesic stripes and 3D weighted walkthroughs to
achieve face-matching results. Tang [59] proposed a principal curvature measure estimation for
3D face recognition. Lv [44] constructed the facial measurement in parameter domain.

Local region-based methods extract local shape descriptors from different facial regions to
construct facial matching framework. Some methods attempted to construct local shape descrip-
tors based on keypoints in 3D face [6, 7, 27, 40]. The others constructed local shape descriptors
from facial surface [25, 30, 31, 35, 39, 55, 56]. Some methods constructed the face recognition
framework based on partial facial region. The partial facial region can be selected from the nasal
region or ear region. In terms of the nasal region, Drira [18] proposed a nasal shape analysis frame-
work using elastic geodesic circle measures in a Riemannian framework. Mahmood [46] proposed
a partial face-matching method that constructed local shape descriptors from the nasal region.
Emambakhsh [21] proposed a partial face recognition framework based on different curves in the
nasal region. Lv [43] proposed nasal similarity measurement based on nasal curves. In terms of
the ear region, Chen [12] proposed an ear recognition method based on local surface patch rep-
resentation. Yan [61] proposed an ear recognition method using curvature estimation and surface
segmentation. Yuan [62] proposed an ear recognition framework based on a nonnegative dictio-
nary and sparse representation. Zhang [64] proposed a 3D ear recognition method based on sparse
coding and a multi-class linear classifier simultaneously.
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In summary, modeling-based methods construct the regular facial model from source 3D face.
Based on the facial model, some influential factors (facial expressions and head poses) are removed.
However, the quality of facial models, such as the 3D morphable model and bilinear model, de-
pends on training facial samples. The modeling process increases the complexity of the algorithm
and various types of occlusion affect the accuracy of the modeling results. Global region-based
methods extract geometric features from 3D face directly. Such methods depend on the quality of
the facial surface. Various influences, such as expressions and occlusions, are difficult to remove.
Local region-based methods are robust to facial expressions and missing data in faces. However,
such methods cannot achieve global facial measures results. In our framework, we attempt to
construct a framework that achieves the advantages of modeling-based methods and local region-
based methods. The facial similarity measurement in our framework is robust to facial expressions,
head poses, and different occlusions. Before introducing our method, we present the fundamentals
of Kendall shape space theory.

3 KENDALL SHAPE SPACE THEORY

Kendall shape space [36] can be regarded as a quotient space, which is used to measure the similar-
ity between different “shapes” in geometric view. The discrete form of a “shape” in Kendall shape
space is represented by points sequences, which is robust to similarity transformations (scaling,
translation, and rotation). In this subsection, we introduce some background knowledge and math-
ematical tools of Kendall shape space theory.

3.1 Kendall Shape Space

The Riemannian manifold [36] is constructed by “shapes,” or points sequences, specifically. To be
a quotient space, Kendall shape space removes the influence of similarity transformation from the
Riemannian manifold. The construction of the Kendall shape space can be considered as a remap-
ping from the Riemannian manifold. The “shapes” in a similarity transformation group of the mani-
fold are remapped to single reflection in Kendall shape space. Therefore, the influences of similarity
transformation are removed from the Riemannian manifold to Kendall shape space. To construct
a Kendall shape space, the Riemannian manifold should be defined at first. Let X = (x1, . . . ,xk ),
which is a points sequence and used to represent the discrete form of shape. In Equation (1), the
Riemannian manifold is defined by X .

M = Rm×k\{0},X ∈ M (1)

M represents the Riemannian manifold constructed by points sequences, X ∈ M . The m is the
dimension number of one point in X . Based on X , it can be known that M is anm ∗ k-dimensional
differential manifold.

Following the definition, the Kendall shape space [D] is achieved from M , which removes the
similarity transformationG in Equation (2). Thea andb are two elements inM with same form toX .
D (a) and D (b) are two reflections of a and b in [D]. In [D], the geodesic distance dKendall between
D (a) and D (b) is invariant in G. The dKendall is the key value to measure the similarity between
different shapes (a and b). Generally, the computation of dKendall in [D] is complex, because the
construction of [D] is difficult. However, in Reference [36], it has been proved that the dKendall

can be achieved from the M directly using Equation (3). The property research of [D] can be
transferred in M . In Section 3.2, we introduce an analysis tool (Procrustes analysis) for dKendall

computation.

M/G = {[D]|D ∈ M } (2)

dKendall (D (a),D (b)) = inf
д∈G

dM (D (a),д.D (b)) (3)
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Fig. 2. The geodesic path between D (a) and D (b) in Kendall shape space. D (τ ) is the shape unit in the path.

3.2 Procrustes Analysis

To solve the Equation (3), the influence of G should be removed, which can reduce the difficulty
of optimization. To remove the influence of similarity transformation G, centroid alignment and
scaling normalization are performed. We illustrate this process in Equation (4) and Equation (5).

Ds (a) = (x (1) − x̄ , . . . ,x (k ) − x̄ )/s (a)

x̄ =
1

k

k∑

j=1

x (j ), s (a) = ��
�

k∑

j=1

���x (j ) − x̄���
��
�

1/2
(4)

dKendall (D (a),D (b)) = inf
O ∈G

dSk
m

(Ds (a),O .Ds (b)) (5)

x̄ is the centroid ofa, and s (a) is the scale ofa. Taking each point ina minus the centroid and divided
by s (a), the new formDs (a), which has removed the translation and scale factors, is achieved. Based
on Equation (4), a new shape measurement is proposed in Equation (5). O represents the rotation
group. Sk

m represents the pre-shape space of Kendall shape space, which has removed the scaling
and translation factors.

To remove the influence of rotation, the alignment of the points sequence should be computed.
The process can be transformed into a singular value decomposition (SVD) problem [36]. The tr (Λ)
represents the trace of matrix (product ofDs (a),Ds (b)), and thedKendall in the Kendall shape space
is achieved in Equation (6), which is called the Procrustes analysis.

dKendall (D (a),D (b)) = infdSk
m

(Ds (a),O .Ds (b))

= arccostr(Λ)
(6)

D (τ ) =
1

sin(θ )
(sin(θ (1 − τ ))D (a) + sin(θτ )D (b))

θ = d (D (a),D (b)),τ ∈ [0, 1]
(7)

The new shape can be constructed by following the geodesic path between two shapes D (a) and
D (b). In Equation (7), we present the new shape construction procedure. The θ is the intersection
angle between two shapes D (a) and D (b) in the space, which is equal to the geodesic distance. The
τ is a parameter that defines the position in the geodesic path between D (a) and D (b). In Figure 2,
we illustrate the geodesic path between D (a) and D (b) in Kendall shape space.

4 PRE-PROCESSING

Based on Kendall theory, the task of facial similarity measures can be regarded as the geodesic dis-
tance computation in Kendall shape space. Providing the discrete points sequence representation
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Fig. 3. Face cropping by non-rigid transfer. The top line represents the reconstruction process, from raw

scanning faces to template facial surface. The following line shows the registration facial surface result.

of facial shape features, the related tools of Kendall theory can be used directly. In this section, we
will discuss the details of the points sequence construction.

4.1 Cropping for Raw Scanning Facial Data

Following the Kendall theory, we should extract the facial shape features first. The facial shape fea-
tures are represented by facial landmarks in many works, such as the active shape model (ASM)
[14] and the active appearance model (AAM) [13]. Generally, facial landmarks detection cannot
be used directly in raw 3D scanning face because of the influence of missing data and noise in the
local facial region. Therefore, the facial cropping is necessary for a raw 3D face. In our framework,
we extract the facial region by Reference [9] and utilize a surface registration method, non-rigid
iterative closest point (NICP) [3], to carry out the cropping task. In Figure 3, we present two in-
stances of facial cropping. After the cropping process, the raw 3D scanning face can be aligned
and normalized into a regular facial surface, and the partial facial surface can be repaired by the
template facial data.

4.2 3D Facial Landmarks Detection

Based on the regular facial surface, a 3D facial landmarks detection method can be used for land-
marks detection. The 3D facial landmarks detection methods of References [16, 34, 51, 57] are based
on the geometric features of the 3D facial surface. We use the facial landmarks detection method
of Reference [57] to achieve a set of coarse facial landmarks. To harvest more accurate facial land-
marks, we attempt to match the regular facial model to a 3D morphable model [65] based on coarse
facial landmarks. The basic idea is inspired by Reference [28]. The accurate facial landmarks have
been labeled in the 3D morphable model. The details of our facial landmarks detection scheme are
illustrated in Figure 4.

4.3 Additional Keypoints

The facial landmarks from the facial surface can be used to represent the facial shape features,
including the eyes, nose, mouth, and facial contours. However, facial landmarks cannot be used
to represent the global facial surface. To represent the global facial surface, some additional
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Fig. 4. 3D facial landmark detection scheme in our framework. A: The coarse facial landmark result; B: 3D

morphable model matching results; C: Final facial landmarks results (68 points).

Fig. 5. Instances of facial landmarks and additional keypoints. The red curves are the geodesic paths between

facial landmarks.

keypoints on the facial surface must be searched to cover the entire facial region. In our framework,
we compute the geodesic paths [58] between different facial landmarks in the facial surface. The
additional keypoints are labeled in the geodesic paths according to fixed step length. The advan-
tage of geodesic path–based keypoints detection is that the different keypoints are approximately
equidistant for various facial expressions [10]. We connect the facial landmarks from different fa-
cial regions to construct a keypoints net, which can be used to represent a discrete form of the facial
surface. The details of additional keypoints’ extraction are discussed in experiments. In Figure 5,
we present some instances of facial surfaces with facial landmarks and additional keypoints. Af-
ter the detection process, we obtain enough facial landmarks and additional keypoints for FFLM
construction.

5 FACIAL FEATURE LANDMARKS MODEL

Based on the facial landmarks and additional keypoints in a 3D face, we propose a facial fea-
ture landmarks model (FFLM) to represent facial shape features. Following the Kendall theory, the
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Fig. 6. Instance of the local coordinate system and the FFLM. A: The red points represent the facial landmarks

selected from the nasal region to construct the local coordinate system; B: N1 to N4 are used to construct

the local coordinate system (First, we connect N3 to N4 to represent the YL axis. Second, we connect N1 to

N2 and compute the ZL axis from N3N4 × N1N2. Finally, we obtain XL from YL × ZL .); C: The discrete form

of the FFLM in the 3D face; D: The pure discrete form of the FFLM.

influence of similarity transformations should be removed from the FFLM. In the following part,
we introduce the construction of the FFLM and the similarity transformation removal method.

We align the center of the points sequence of FFLM first. In our framework, the center of the
points sequence is not the average center, but the nasal tip in a 3D face. The reason is the influence
of facial expression is not removed, which affects the relative positions of the points. The nasal
tip’s position is limited by the skull, which is more stable. In Equation (8), we align the points
sequence based on the nasal tip, which removes the influence of translation.

DF = {x1, . . . ,xk ,xN },
Lvt = {v1, . . .vk },vi = xi − xN

(8)

DF is the points sequence from the 3D face that includes facial landmarks and additional keypoints.
XN is the nasal tip from the DF . Lvt is the points sequence, which is aligned by XN . Next, the
influence of scaling should be removed. We compute the scale of Lvt and use it to normalize Lvt .
In Equation (9), Lvts is obtained, which removes the scale s (Lvt ) from Lvt .

s (Lvt ) = �
�

k∑

i=1

‖vi ‖�
�
,vi ∈ Lvt

Lvts = {v ′1, . . .v ′k },v
′
i =

vi

s (Lvt )
,

k∑

i=1

��v ′i �� = 1

(9)

Equation (8) and Equation (9) are consistent with Equation (4), and the influences of translation
and scaling are removed from the new points sequence Lvts . In our framework, the influence
of rotation can be removed by the facial landmark alignment process. We select several facial
landmarks from the nasal region, which are robust to the facial expressions, to align the local
coordinate system. In Equation (10), we achieve the final representation of the facial shape features,
which can be regarded as the FFLM of the facial data. The coordinate transformation function T
is used to transfer points in Lvts into the local coordinate system, which is constructed by facial
landmarks from the nasal region. In Figure 6, we illustrate the local coordinate system and the
instance of FFLM.

Lvt sr = {T (v ′1), . . . ,T (v ′k )} (10)
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6 FACIAL SIMILARITY MEASUREMENT

We propose the facial similarity measurement based on the FFLM. Theoretically, the geodesic dis-
tance of different FFLMs is computed in Equation (11), and Lvtsr (a) and Lvtsr (b) represent two
FFLMs.

dKendall (Lvtsr (a),Lvtsr (b)) = arccos (Lvtsr (a) · Lvtsr (b)) (11)

However, the influence of facial expressions is not removed from the FFLM. To address this
issue, we propose an FFLM reconstruction method based on a geodesic path search in Kendall
shape space (GPSK [42]). Using GPSK, the facial attributes of the source FFLM can be decoupled:
expression and identity, which are controlled by parameters of GPSK.

6.1 Reconstructing FFLM

The reconstruction of the source FFLM includes three steps: (1) Achieving template FFLM data-
base from a template facial database that has regular labels of facial expressions and identities;
(2) Searching for the initial FFLM from the template FFLM database that has the minimum geo-
desic distance to the source FFLM; (3) Optimizing the initial FFLM to obtain the final reconstructed
FFLM using a geodesic path search in Kendall shape space (GPSK). The template FFLM database
can be achieved by Equation (8) to Equation (10). In Equation (12), we show the function for ini-
tializing an FFLM from the template FFLM database. Ft represents the template facial database, Fi

represents the face in Ft , and Fs represents the source face. The initial FFLM Lvtsr (Finit ) is the
FFLM of Fi that has the minimum geodesic distance to Lvtsr (Fs ) in Kendall shape space.

Lvtsr (Finit ) = {Lvtsr (Fi ) |mindKendall (Lvtsr (Fi ),Lvtsr (Fs )),
Fi ∈ Ft }

(12)

The initial FFLM Lvtsr (init ) can be regarded as the starting point for GPSK. The GPSK in our
framework involves searching the direction of the geodesic path iteratively based on the FFLMs
from Ft and generating the new FFLM in Kendall shape space in Equation (7). The GPSK for FFLM
construction is decoupled from the facial attributes (identity and expression) in our framework.
The target of GPSK is to reduce the geodesic distance between the reconstructed FFLM and source
FFLM. The distance is represented by two facial attribute optimizations in Equation (13).

Eexpr ession = dKendall (Lvtsr (Fi ),Lvtsr (Fs )),
Fi ∈ Fexpr ession

Eidentity = dKendall (Lvtsr (Fi ),Lvtsr (Fs )),
Fi ∈ Fidentity

(13)

In detail, the basic computation of GPSK in each iteration includes two steps: (1) searching
the expression candidate FFLMs in Ft that have the same identity label as the initial FFLM and
generating new FFLM with new expression; (2) searching the identity candidate FFLMs in Ft that
have the same expression label as the initial FFLM and generating new FFLM with new identity.
For step 1, the expression candidate set is represented by Fexpr ession in Equation (13). Similarly, the
identity candidate set is represented by Fidentity . We propose the new FFLM generation method in
Equation (14), which is derived from Equation (7) and used to generate the new FFLM Lvtsr (Fnew )
in Kendall shape space.

Lvtsr (Fnew ) =
1

sin(θ )
(sin(θ (1 − τ ))Lvtsr (Finit )

+ sin(θτ )Lvtsr (Fi ))
θ = d (Lvtsr (Finit ),Lvtsr (Fi )),τ ∈ [0, 1]

(14)
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Fig. 7. Instance of the GPSK for expression and identity optimization. In part A, the facial data with a red

frame are template faces with different identities and the same expression from the database. In part B, the

facial data with a blue frame are template faces with different expressions and the same identity from the

database. The green arrows represent the geodesic path searching directions. The new faces are generated

by following the arrows.

The GPSK can be compared to the linear optimization process. The new FFLMs are synthe-
sized by existing FFLMs. The difference is the GPSK generates new FFLMs in Kendall shape space,
which is not a linear space. The optimization results are more consistent with the natural facial
expressions transfer and facial identity shape features. Using the GPSK, the initial FFLM is updated
constantly until Eexpr ession and Eidentity are not decreasing. The iteration is stopped when the en-
ergy values in Equation (13) are below a threshold, and the reconstructed FFLM is achieved. After
this process, the new FFLM with the new expression and identity label is generated. In Figure 7,
we present an example to explain the process of GPSK.

6.2 Facial Similarity Measurement for FFLMs

We propose the facial similarity measurement based on the reconstructed FFLM. We select the
FFLM that has the same identity label as the reconstructed FFLM and the natural expression label,
then the reconstructed FFLM is transferred to the regular FFLM (without expression). In Equa-
tion (15), we show the expression removal function for the source FFLM.

Mtr ansf er = Lvtsr (Fr eдular ) − Lvtsr (Fr econstruction )
Lvtsr (Ff inal ) = Lvtsr (Fs ) +Mtr ansf er

(15)

Mtr ansf er represents the expression transfer from the reconstructed FFLM Lvtsr (Fr econstruct ) to
the regular FFLM Lvtsr (Fr eдular ). The final FFLM Lvtsr (Ff inal ) can be obtained by using the
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Mtr ansf er to transfer the source FFLM Lvtsr (Fs ), which removes the influence of facial expressions
from source face. The operation can be viewed as an approximation; that is, the transfer between
reconstructed FFLM and regular FFLM approximates the source FFLM to final FFLM. Based on
the final FFLM, the expression-robust facial similarity measurement can be obtained from Equa-
tion (11).

Based on the similarity measurement, an effective facial organization is constructed. In the fol-
lowing section, we will discuss the facial organization.

7 FACIAL ORGANIZATION

We propose a facial organization based on our facial similarity measurement. Generally, the face-
searching process in a large facial database incurs a high computational cost. In our framework,
we divide the faces into subclasses based on the facial similarity measurement. The subclasses can
be organized into a hierarchical structure. The face-searching process in a large facial database can
be divided into subtasks in this structure. Here, we explain the details of the facial organization.

We define the mean FFLM as the data center of a subclass. The mean FFLM represents the global
shape features of a subclass. In Equation (16) and Equation (17), we present the computation of the
mean FFLM.

S = {F1, . . . Fn },

V (Lvtsr (Fm )) =
n∑

i=1

d (Lvtsr (Fm ),Lvtsr (Fi ))
(16)

Lvt sr (F ) = arg min
Fm ∈S

V (Fm ) (17)

S is the subclass of FFLMs in the facial dataset, andV is the sum of the distances from an FFLM to

other FFLMs in set S . The mean FFLM Lvt sr (F ) of S is the FFLM that has the minimum value ofV
in set S . The facial clustering method is used to find different mean FFLMs of different subclasses
in a large facial database. We use the AP clustering method [23] to obtain the mean FFLMs and
subclasses. The similarity measurement values of different FFLMs from the facial database are
taken as an input matrix for AP clustering. After the clustering process, the 3D faces from the
database can be divided into different subclasses with similar mean FFLM (clustering center). When
the amount of 3D faces in a subclass is larger than a specified threshold, we iteratively implement
the AP clustering until the number of 3D faces in each subclass is less than the threshold. Finally,
a hierarchical structure can be constructed based on the subclasses in different levels.

In Figure 8, we illustrate the process of constructing the hierarchical structure. Faces F1 to Fn
from different persons in the facial database are used to construct the FFLMs. The distance matrix
(d11 to dnn ) of different persons is constructed by the similarity measurement. M represents the
person with the mean FFLM from the whole facial database. M1 and M2 represent the person with
the mean FFLM in the second-level subclasses. Based on the facial organization structure, the scale
of the face-searching task in a large database is obviously reduced. In experiments, we show the
improvement of face searching based on the organization.

8 EXPERIMENTS

We evaluate the performance of the facial similarity measurement and facial organization. The
hardware platform is constructed by Intel Xeon E5620 2.4 GHz, 12 G RAM, and TITAN XP.
The facial expression database, Facewarehouse [11] (150 persons × 20 expressions), is used to
be the template facial database and reconstruct the FFLM. The other two facial databases, FRGC2.0
[52] and BosphorusDB [53], are used to evaluate the accuracy of the similarity measurement. We
construct the different test sets from the two facial databases and compare different methods on
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Fig. 8. Construction of the hierarchical structure based on the distances between the reconstructed FFLMs.

face recognition tasks. Based on the similarity measurement, we construct the facial organiza-
tion and evaluate the performance. The improvement of face-searching speed based on the facial
organization is evaluated.

The additional keypoints should be defined clearly. The additonal keypoints extraction should
follow two rules: (1) the geodesic path for keypoints location should not cross the regions that
include the eyes and mouth; (2) the sampling density of keypoints should be proportional to the size
of the face area. The eye and mouth regions contain complex geometric information that influences
the accuracy of the keypoints’ positions. Following these two rules, we propose a configuration to
guide the additional keypoints extraction. In Figure 9, we present the additional facial keypoints
extraction configuration. Mtr ansf er is used to remove the influence of expression from a 3D face
when the FFLM includes all vertices. In Equation (15), Mtr ansf er is used to remove the influence
of facial expression. Once the FFLM is extended to the global facial surface, Mtr ansf er can be used
to represent the facial surface transfer between different expressions. Through face alignment and
the neighbor point interpolation algorithm, the expression removal process can be achieved for a
3D face. In Figure 10, we show the expression removal instances.

8.1 Robustness for Different Facial Expressions

To show the performance of the FFLM reconstruction, we propose the experiments for facial ex-
pressions robustness evaluation. We use a 10-fold cross-validation test in FRGC2.0 and Bospho-
rusDB. A subclass of probe set includes 285 × 2 samples in FRGC2.0 and 105 samples in Bospho-
rusDB (the sets do not include different types of occlusions and head poses). In Figures 11 and 12,
we show the receiver operating characteristic curves (ROC) and cumulative matching character-
istics (CMC) results to illustrate the improvement in accuracy for the FFLM reconstruction. The
results from “Without reconstruction” are achieved from the FFLM without reconstruction, which
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Fig. 9. The additional keypoints extraction configuration. In the left picture, the facial landmarks labels (blue

number) show the basic information used to locate the different facial landmarks. In the right picture, we

use a purple box to represent the geodesic path between related facial landmarks (red represents the start,

green represents the end) and sign the sampling rate for the additional keypoints labels.

means the expression influences are not removed from the measurement. The results from “Recon-
struction1” mean the FFLM is constructed by facial landmarks without additional keypoints, which
means the FFLM is not a global facial shape representation. The results from “Reconstruction2”
mean the FFLM with reconstruction and all points. The comparison of the results shows that the
reconstruction and additional keypoints improve the accuracy of the measurement obviously.

Based on the different test sets, we evaluate the identification accuracy of different facial
measures methods. Even for those methods [17, 18] that construct a face-matching framework
based on shape space, which is similar to our method, the matching accuracy is affected by
the quality of the facial surface. The elastic shape measure for certain curves is not strictly a
facial expression robustness algorithm. Berretti [5] proposes a facial measures method based on
geodesic stripes that are robust to different facial expressions. However, the method is sensitive
to head poses, which affects the accuracy of the facial similarity measurement. Some researchers
[7, 40] propose 3D face recognition methods based on keypoints features that achieve high
accuracy for 3D faces with partial surfaces and do not require high-quality meshes. However, the
performance of the method depends on the density of keypoints in the facial data, which does
not support accurate quantitative facial analysis.

In Table 1, we evaluate the identification and verification rate of different methods in two facial
test sets in terms of FAR0.1 and Rank1. We collect the results of other methods from original pub-
lished data and code reproduction (for Drira and Berriti). For further evaluation of the influence of
expressions on face recognition, we construct subsets from BosphorusDB (105×15 samples totally
and 105×8 with expressions). In Table 2, based on the subsets, we evaluate the identification rate
in Rank1 of different methods.

8.2 Robustness for Different Occlusions

BosphorusDB contains various types of occlusions and poses in the 3D faces. We select 105*5
samples from 105 persons to build the probe set. In most cases, the keypoints are extracted from
the nasal region under various types of occlusion. To facilitate the keypoints extraction, we limit
the effective region to the nasal area. For some facial data affected by extreme poses and occlusions,
we have only one-half of the facial surface; we extract the keypoints from the effective part to build
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Fig. 10. Examples of the expression removal process. The first row represents the 3D faces with different

expressions. The second row represents the 3D faces after the expression removal process. The bottom two

rows represent the root-mean-square (RMS) errors for the top two rows (different faces to a regular face with

a neutral expression. The distance value is limited between 0 mm and 1.2 mm).

the local final FFLM. We select different types of data from BosphorusDB to construct subsets. In
Figure 13, we show the ROC and CMC results of our method in different subsets.

The global features–based method cannot achieve effective facial analysis results based on 3D
faces with different kinds of occlusions. Some methods that are based on local features or nasal
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Fig. 11. The CMC and ROC results of three methods in FRGC2.0.

Fig. 12. The CMC and ROC results of two methods in BosphorusDB.

surface region analysis are used as comparison. Drira [18] extracts geodesic curves from the nasal
region, but the drawback of this method has been discussed. Berretti [7] proposed a keypoints-
based 3D face recognition method that represents a new trend for practical face analysis. The
corresponding keypoints are detected on the facial surface and used to build the facial measure-
ment. However, the method is not robust to rigid transfer and sensitive to the quality of the facial
surface. In Table 3, we evaluate the identification rate in Rank1 of the various methods in different
subsets.

8.3 Evaluation of Facial Data Organization

The facial organization improves the speed of face searching in a large facial database. The search-
ing path can be obtained based on the structure by comparing the source FFLM to the mean FFLMs
from different levels. Thus, the computational requirements of the face-searching process in a large
facial database can be reduced. Drira [18] proposed a similar facial data organization by nasal ge-
odesic curves’ measurement. In Table 4, we show the time cost for different methods in FRGC2.0
and BosphorusDB. As a comparison, our facial organization is better than Drira [18]. The reason
is the FFLM similarity measurement is faster than curves’ elastic measures.
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Table 1. Identification and Verification in FRGC2.0 & BosphorusDB by

Different Methods

Database FRGC2.0 BosphorusDB

Method Rank1 FAR0.1 Rank1 FAR0.1

Berretti 2010 0.923 0.891 0.842 0.863
Berretti 2014 0.962 0.971 0.945 0.953

Drira 2009 0.732 0.762 0.681 0.722
Drira 2013 0.977 0.971 0.923 0.912

Li 2014 0.963 – 0.966 –
Gilani 2016 0.971 0.968 0.963 –

Ouamane 2017 – 0.968 – 0.989
Emambakhsh 2017 0.969 0.935 0.953 –

Lv 2018 – – 0.90 0.91
Soltanpour 2019 0.993 – 0.948 –

Hawraa 2019 0.964 – – –
Our Method 0.981 0.985 0.971 0.973

Table 2. Identification Rate of Rank1 in Different Subsets of BosphorusDB

Method
Neutral vs. Neutral vs. Neutral vs.

Expressions Neutral All

Berretti 2010 0.896 0.923 0.812
Berretti 2014 0.915 0.979 0.934

Drira 2009 0.653 0.814 0.796
Drira 2013 0.956 0.982 0.956

Li 2014 0.961 0.972 0.952
Gilani 2016 0.967 – 0.979

Ouamane 2017 – – 0.9617
Emambakhsh 2017 – – 0.953

Soltanpour 2019 0.977 – 0.948
Our Method 0.968 0.988 0.979

Fig. 13. The CMC and ROC results of our method in different subsets of BosphorusDB.
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Table 3. Identification Rate of Rank1 in Different Subsets of BosphorusDB

(Poses and Occlusions)

Method Pose [−45,+45]
Occlusions

(hand, hair, and glasses)

Berretti 2010 0.552 0.652
Berretti 2014 0.915 0.932

Drira 2009 0.721 0.743
Drira 2013 – 0.87

Li 2014 0.911 0.992
Gilani 2016 0.882 0.973

Lv 2018 0.91 0.87
Our Method 0.934 0.951

Table 4. The Comparison of Speed Searching by Different Facial

Recognition Methods

Database FRGC2.0 BosphorusDB

Method
Average Average time Average Average time

time in structure time in structure
Drira 2009 183 s 27 s 110 s 27 s

Berriti 2010 47 s – 38s –
Gilani 2016 >300s – >300s –

Ouamane 2017 >300s – >300s –
Our Method 65 s 17 s 43 s 11 s

9 CONCLUSION

We present a novel 3D facial similarity measurement based on Kendall shape space theory. The
advantages of our measurement are robustness to similarity transformation, facial expressions,
and different types of occlusions. The experimental results show that our framework can achieve
accurate facial similarity measures results and improve the speed of the face searching. In future
work, we will focus on reducing the complexity of the facial landmarks and additional keypoints
extraction algorithm. We also plan to improve the accuracy of the partial facial data registration
and the efficiency of the face cropping in raw facial data.
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